

Thinking Recursively
Part II

Outline for Today
● The Recursive Leap of Faith

● On trusting the contract.
● Enumerating Subsets

● A classic combinatorial problem.
● Decision Trees

● Generating all solutions to a problem.

Some Quick Refreshers

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

Answer at
https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

{1, 2, 3}

Set<int> mySet

Program

{1, 2, 3, 4}
{1, 2}

Recursion Refresher
● What does this code print?

void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
}

squigglebah(2);

Answer at
https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev

 squigglebah(2);

Program

1
2

The Recursive Leap of Faith

The Contract

bool isVowel(char ch);

I give you a
character.

You tell me
if it’s a
vowel.

The Contract

bool isVowel(char ch) {
 ch = toLowerCase(ch);
 return ch == 'a' ||
 ch == 'e' ||
 ch == 'i' ||
 ch == 'o' ||
 ch == 'u';
}

The Contract

bool isVowel(char ch) {
 switch(ch) {
 case 'A': case 'a':
 case 'E': case 'e':
 case 'I': case 'i':
 case 'O': case 'o':
 case 'U': case 'u':
 return true;
 default:
 return false;
 }
}

The Contract

bool isVowel(char ch) {
 ch = tolower(ch);
 return string("aeiou").find(ch) != string::npos;
}

The Contract

I give you a
string.

You tell me if it
has two or more
consecutive letters
that are vowels.

bool hasConsecutiveVowels(const string& str);

Trusting the Contract

bool isVowel(char ch);

bool hasConsecutiveVowels(const string& str) {
 for (int i = 1; i < str.length(); i++) {
 if (isVowel(str[i - 1]) && isVowel(str[i])) {
 return true;
 }
 }
 return false;
}

It doesn’t matter how
isVowel is implemented.
We just trust that it

works.

The Contract

string reverseOf(const string& input);

I give you
a string.

You give me
its reverse.

Trusting the Contract

string reverseOf(const string& input);

string reverseOf(const string& input) {
 if (input == "") {
 return "";
 } else {
 return reverseOf(input.substr(1)) + input[0];
 }
}

It doesn’t matter how
reverseOf reverses the
string. It just matters

that it does.

void drawTree(double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

… that’s this
big …

… facing
this way …

… with this
order.

… at this
position …

The Contract

void drawTree(double x, double y,
 double height, double angle,
 int order);

void drawTree(double x, double y,
 double height, double angle,
 int order) {
 if (order == 0) return;

 GPoint endpoint = drawPolarLine(/* … */);

 drawTree(/* … */);
 drawTree(/* … */);
}

Trusting the Contract

It doesn’t matter how
drawTree draws a

tree. It just matters
that it does.

The Recursive Leap of Faith
● When writing a recursive function, it helps to take

a recursive leap of faith.
● Before writing the function, answer these

questions:
● What does the function take in?
● What does it return?

● Then, as you’re writing the function, trust that
your recursive calls to the function just “work”
without asking how.

● This can take some adjustment to get used to, but
is a necessary skill for writing more complex
recursive functions.

Time-Out for Announcements!

Recursive Drawing Contest
● We are holding a (purely optional, just for

fun) Recursive Drawing contest!
● Visit http://recursivedrawing.com/, draw

whatever you’d like, and post it to the
EdStem thread for the contest.

● We’ll award recursion-themed prizes to a
small number of entries.

● Deadline to submit is Monday at 1:00PM
Pacific.

http://recursivedrawing.com/

Assignment 2
● Assignment 2 is due this Friday at 1:00PM.

● If you’re following our timetable, you’ll have
finished Rosetta Stone at this point and be
midway through Rising Tides.

● Have questions?
● Stop by the LaIR!
● Ask on EdStem!
● Visit our office hours!

Back to CS106B!

Recursive Enumeration

e·nu·mer·a·tion
noun

The act of mentioning a number
of things one by one.

(Source: Oxford Languages, via Google)

Listing Subsets
● A set S is a subset of a set T when every element of S

is an element of T.
● There are two subsets of {2}:

{ } {2}
● There are four subsets of {2, 3}:

{ } {2} {3} {2, 3}
● How many subsets are there of {2, 3, 4}?

{ }
{2} {3} {4}

{2, 3} {2, 4} {3, 4}
{2, 3, 4}

● The only subset of { } is { }.
Answer at

https://cs106b.stanford.edu/pollev

https://cs106b.stanford.edu/pollev

Listing Subsets
● A set S is a subset of a set T when every element of S

is an element of T.
● There are two subsets of {2}:

{ } {2}
● There are four subsets of {2, 3}:

{ } {2} {3} {2, 3}
● How many subsets are there of {2, 3, 4}?

{ }
{2} {3} {4}

{2, 3} {2, 4} {3, 4}
{2, 3, 4}

● The only subset of { } is { }.

You need to send an emergency
team of doctors to an area.

You know which doctors you
have available to send.

List all the possible teams you
can make from your list of all the

doctors.

{ 1, 2, 3, 4 }

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

1

1

1

1

4

4

4

4

3

3

3

3

2

2

2

2

,

,

,

, ,

,

,

,

, ,

,

,

,

,

,

,

,

{ 1, 2, 3, 4 }

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

1

1

1

1

4

4

4

4

3

3

3

3

2

2

2

2

,

,

,

, ,

,

,

,

, ,

,

,

,

,

,

,

,

These are all the
subsets of
{ 2, 3, 4 }.

{ 1, 2, 3, 4 }

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

1

1

1

1

4

4

4

4

3

3

3

3

2

2

2

2

,

,

,

, ,

,

,

,

, ,

,

,

,

,

,

,

,

These are all the
subsets of

{ 2, 3, 4 } with 1
inserted into them.

Aidans List Subsets

Aidan
{1, 2}

Include 1 Exclude 1

Aidan
{2}

Insert {1}

 I
nc

lu
de

 2 Exclude 2
Aidan

{}
Insert {1, 2}

{1, 2}

Aidan
{}

Insert {1}

{1}

Aidan
{2}

Insert {}

 I
nc

lu
de

 2 Exclude 2

Aidan
{}

Insert {2}

{2}

Aidan
{}

Insert {}

{}

This is called
a decision

tree.

Aidans List Subsets

listSubsetsOf
elems: {1, 2}

soFar: {}

listSubsetsOf
elems: {2}
soFar: {1}

listSubsetsOf
elems: {}

soFar: {1, 2}

listSubsetsOf
elems: {}
soFar: {1}

listSubsetsOf
elems: {2}
soFar: {}

listSubsetsOf
elems: {}
soFar: {2}

listSubsetsOf
elems: {}
soFar: {}

Include 1 Exclude 1

 I
nc

lu
de

 2

 I
nc

lu
de

 2Exclude 2

Exclude 2

{1, 2} {1} {2} {}

Base Case: If you have no
items left to choose from,
output the items you’re

required to include.

Recursive Case: Pick an item.
Then list all subsets of the

remaining items twice, once
including the item and once

excluding it.

Summary For Today
● Making the recursive leap of faith and

trusting that your recursive calls will
perform as expected helps simplify
writing recursive code.

● A decision tree models all the ways you
can make choices to arrive at a set of
results.

Your Action Items
● Read Chapter 8.

● There’s a lot of great information there about recursive
problem-solving, and it’s a great resource.

● Read the Slide Appendix
● There’s a trace through how this function works; review this

before next lecture.
● Finish Assignment 2

● If you’re following our suggested timetable, at this point
you’ll have finished Rosetta Stone and will have started
working on Rising Tides.

● Come to LaIR or ask on EdStem if you have any questions!

Next Time
● Iteration + Recursion

● Combining two techniques together.
● Enumerating Permutations

● What order should we perform tasks in?

Appendix: Tracing the Recursion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

